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Universal criterion and amplitude equation for a nonequilibrium Ising-Bloch transition
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We identify a universal criterion for the onset of a nonequilibrium Ising-Bloch~NIB! transition, and describe
the behavior near the bifurcation by a generic amplitude equation. We found that a NIB transition is caused by
an antisymmetric eigenvector passing the translational mode of the system at a critical point. In this context we
discuss Hamiltonian and dissipative systems. We report on a NIB in nonlinear optics, manifesting itself in a
transition from static to moving polarization fronts.
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Nonlinear systems can exhibit spatially homogeneous,
riodic, or localized structures with nontrivial dynamical b
havior. One of the basic issues in nonlinear physics is
correctly predict the interaction of such solutions where th
coexist. For example, bistable systems can exhibit fro
connecting two stable homogeneous states. The prope
and dynamics of such fronts have attracted attention ac
many branches of science, including chemistry, biolo
fluid dynamics, and optics@1#.

Generally, a front connecting two nonequivalent homo
neous states moves in such a way that the more stable
annihilates the other. Sometimes, as a consequence of a
crete symmetry, a system may possess twoequivalentstates.
The front between such states is generally at rest du
symmetry. But such fronts can destabilize via a bifurcat
on changing a system parameter. A prominent exam
among gradient systems@1# is the so-called Ising-Bloch tran
sition @2,3#, known from the physics of ferromagnets an
liquid crystals@4#. However, many interesting nonlinear sy
tems are far from equilibrium, and cannot be described b
free energy functional, i.e., the governing order-parame
equation is not of gradient type. Nevertheless, the sym
tries of the system are frequently preserved even far from
gradient limit. Thus pairs of equivalent solutions exist, b
the net force acting on an interface between them is
necessarily zero. Examples of a transition from resting
moving fronts were found in the complex parametrica
driven Ginzburg-Landau equation@2,5#, in an activator-
inhibitor reaction-diffusion system@3#, and in optical para-
metric oscillators@8#. The corresponding bifurcation is ofte
referred to as the nonequilibrium Ising-Bloch~NIB! transi-
tion.

The main result of this paper is to obtain a rather sim
but universal criterion for the onset of a NIB transition and
generic amplitude equation, which can be applied to
known cases. To this end we identify symmetries, which
essential for a NIB transition, but more general than th
presented in Refs.@2–5#. The investigations are based on t
crucial finding that for each nonlinear nonequlibrium syst
a bifurcation of a resting solitary wave to a moving one
linked to an internal mode which comes intoexactcoinci-
dence with the translational mode. In this context we co
pare dissipative~gradient and nongradient! and Hamiltonian
systems. The formalism and bifurcation scenario descri
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in this work is rather general. For definiteness, we study
example from nonlinear optics where the formation and c
trol of localized structures and fronts recently attracted
considerable deal of interest@6,7#.

Due to the availability of materials with large second o
der suceptibilities, much attention has been given to param
ric processes@8–17#. Here we study intracavity type-II sec
ond harmonic generation in a planar waveguide resona
where two orthogonally polarized pump photons at f
quencyv generate one signal photon at 2v. The normalized
set of equations for the slowly varying envelopes of the t
orthogonally polarized fundamental harmonic fieldsA1,2
~FH1, FH2! and of the second harmonic fieldB ~SH! reads,
in the mean field limit, as@16#

~ i ] t1]x
21DA1 i !A1,21A2,1* B5E,

~1!

S i ] t1
1

2
]x

21DB1 ig DB1A1A250,

where ]x
2 describes diffraction, andt is the dimensionless

time. The incident fieldE is a monochromatic plane wav
with a polarization angle of 45°, thus driving both FH wav
with the same intensity. The FH and SH fields are detun
by DA andDB from a resonator resonance, respectively.g is
the ratio of the photon lifetimes at the two frequencies@17#.
A typical experimental configuration could consist of
500-mm-thick KTP crystal sandwiched between two mirro
with 95% reflectivity for both fundamental and second h
monic waves. If thed31 coefficient is employed, and phas
matching occurs at a certain tilt at 1.06mm, one obtains the
length and time scales as 30mm and 110 ps. The driving
intensity uEu251 corresponds to about 50 kW/cm2.

Equations~1! exhibit the translational symmetry and tw
discrete symmetries:

Z:~A1 ,A2 ,B!→~A2 ,A1 ,B!, P:x→2x. ~2!

Z allows for a pitchfork bifurcation of the stationary (] t
50), homogeneous (]x50), and symmetric (A15A2) solu-
tions @16#. There are two different resting fronts, i.e., heter
clinic trajectories, which connect equivalent states appea
after the pitchfork bifurcation. They are transformed in
each other on applyingZ @see Fig. 1~a!#. On the other side,
©2001 The American Physical Society02-1
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each front is transformed into itself on applyingŜ5ZP0,
where the subscript ‘‘0’’ stresses that the reference frame
the spatial inversion was chosen at the point whereA15A2.
In what follows, fronts, which are invariant with respect toŜ,
are termedIsing fronts. Polarization fronts with similar sym
metres were recently observed in a single feedback exp
ment with a sodium cell@18#. Ising fronts previously re-
ported in Refs.@2,3,8# appear as particular cases of o
definition. For example, the Ising front in the CPGL equati
is antisymmetric with respect to the inversion operatorP0.
Therefore, theZ operator for the only occurring fieldA in
the CPGL equation has to be chosen likeZ:A→2A. Then
this Ising front is symmetric with respect toŜ, and all fol-
lowing considerations also hold for the CPGL model. Belo
we will demonstrate that a transition from a resting symm
ric front to a moving front is associated with a breaking
the Ŝ invariance, i.e., the symmetry operatorŜ transforms a
forward movint front into a backward moving front, and vic
versa. These fronts are calledBloch fronts, and we term this
bifurcation the NIB transition. Naturally, the eigenmode
the linearized operator driving this transition has to be a
symmetric to theŜ symmetry.

First we analyze the spectral properties of the resting
larization front. For the sake of numerical convenience,
switch to a real basis, rewriting Eqs.~1! in the general form

] tuW 2wW uuW ,p50, ~3!

whereuW (x) is a six-component vector of the electrical fiel
uW (x)5(ReA1 ,ImA1 ,ReA2 ,ImA2 ,ReB,ImB)T, and wW is a

FIG. 1. Nonequlilibrium Ising-Bloch transition of polarizatio
fronts in intracavity second harmonic generation.~a! Ising front
~unstable!. ~b! Bloch front ~stable!. Insets: FH polarization ellipse
~c! Spectrum of eigenvalues of the Ising front.~d! NIB criterion

u^aW 0ueW0&u. Parameters:DA520.7,DB524, E54, andg50.5.
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vector that is a nonlinear function of the fields and an ar
trary bifurcation parameterp. Obviously, resting frontsuW 0

obey the relationwW uuW 0 ,p50. They are invariant with respec

to the symmetry transformationŜ„uW 0(x)…5„u3
0(2x),

u4
0(2x),u1

0(2x),u2
0(2x),u5

0(2x),u6
0(2x)…T5uW 0(x). Thus

the eigenvectorseWn of the Jacobian]uWwW uuW 0 ,p ~the first deriva-

tive of the nonlinear vectorwW with respect to the fielduW at
the resting frontuW 0) and the corresponding eigenvectorsaW n

of the adjoint Jacobian (]uWwW )1uuW 0 ,p , can be either symmet

ric, Ŝ(eWn)5eWn , or antisymmetric,Ŝ(eWn)52eWn . The resting
front destabilizes if an eigenvalue, corresponding to any
genvectoreWn , has a positive real part. An infinitesimal tran
verse translation of the resting front generates the nullve
eW05]xuW 0 ~the translational mode! of ]uWwW uuW 0 ,p , i.e.,

]uWwW uuW 0 ,p(eW0)50. Both the nullvectoreW0 and the correspond

ing nullvector aW 0 (]uWwW
1uuW 0 ,p(aW 0)50) of the adjoint Jaco-

bian are antisymmetric.
We have found that at some critical value of the para

eter p5p0 ~see the bifurcation diagrams in Fig. 2! the
second-harmonic-generated~SHG! system undergoes a NIB
transition. Each resting front transforms into a moving o
propagating either in positive or negative directions@see Fig.
1~b!#. By numerically solving the eigenvalue problem fo
]uWwW uuW 0 ,p we have found that the NIB transition is linked to
nontrivial and antisymmetric bound eigenmode of the Ja
bian with a real eigenvalue@see Fig. 1~c!#. Therefore, SHG
provides an example of a symmetry breaking of a symme
solution due to an antisymmetric eigenvector. Additional
we found that this eigenvector passes through the tran
tional mode. In contrast in the gradient limit of the CPG
equation@2#, the destabilization of an Ising front is initiate
by an eigenvector which isorthogonal to the respective
translational mode. However, we will show in the next pa
graph that as soon as a nonlinear system leaves the gra
limit the NIB bifurcation is induced by an eigenvector pas
ing exactlythe translational mode.

Now we investigate this symmetry breaking close to t
bifurcation point. We introduce a moving reference framej
5x2* t0

t v(t8)dt8 into Eq. ~3!, and obtain

] tuW 2v]juW 2wW uuW ,p50W . ~4!

FIG. 2. Symmetry breaking bifurcation.~a! Bifurcation diagram
for the front velocity close to the critical point; parameters:DA5
20.31, DB524, andg50.5. ~b! Evolution of an unstable resting
to a stable moving front forE54.
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We assume the following scaling up to the third order arou
the critical point: uW 5uW 01eXW 1e2YW 1e3ZW , v5ev81e2v9
1e3v-, ] t5e2]T , andp5p01e2p2, with e!1. In first or-
der (e1) we obtain2v8]juW 02]uWwW uuW 0 ,p0

(XW )50, which can
only be solved for

^aW 0ueW0&50. ~5!

This relation is one of the key results of this paper, beca
it represents the criterion for the onset of a NIB transition.
the critical point one findsXW 5v8xW1, with ]uWwW uuW 0 ,p0

(xW1)5

2eW0. Thus in first order the shape of the front is disturbed
a component of velocityv8 pointing in the direction of the
antisymmetric vectorxW1. It can easily be shown that the ve
tor xW1 is linearly independent of all eigenvectors of the Ja
bian ]uWwW uuW 0 ,p . Therefore, at the critical point two eigenve
tors of the Jacobian must become degenerate to preserv
dimension of the vector space. In the case of a NIB transi
a nontrivial bound state passes the translational mode.
symmetry reasons, in second order we obtain (e2) YW 5p2yW 1

1v8 2yW 21v9xW1, with ]uWwW uuW 0 ,p0
(yW 1)52]pwW uuW 0 ,p0

and

]uWwW uuW 0 ,p0
(yW 2)52]uW

2
wW uuW 0 ,p0

(xW1 ,xW1)/22]jxW1. Finally the

solvability condition applied to third order (e3) gives an am-
plitude equation for the velocityv8 which represents the nor
mal form for a symmetry breaking~pitchfork! bifurcation,

rp2v81sv8 35]Tv8, ~6!

where

r 5^aW 0u]jy11]uW
2
wW uuW 0 ,p0

~xW1 ,yW 1!1]uW ,pwW uuW 0 ,p0
~xW1!&/^aW 0uxW1&

and

s5^aW 0u]jy21]uW
2
wW uuW 0 ,p0

~xW1 ,yW 2!

1]uW
3
wW uuW 0 ,p0

~xW1 ,xW1 ,xW1!/6&/^aW 0uxW1&.

In the case of type II intracavity second harmonic gene
tion, ]uW

3
wW vanishes. If the change of the input fieldE5E0

1e2E2 is the bifurcation parameterp, we also have]uW ,pwW

50 and]pwW 5(0,1,0,1,0,0). Furthermore, numerics pred
that the bifurcation is supercritical for the parameters
lected. If E2,0, there is only the trivial stationary solutio
v850, corresponding to a resting front. Beyond the critic
point this branch becomes unstable and two new stable
lutions v856A2rE2 /s emerge, corresponding to the tw
counterpropagating fronts@see Fig. 2~a!#. The asymptotic ex-
pression for the spatial profiles of the fronts close to
bifurcation point can be calculated asuW 5uW 01ev8xW1

1e2(p2yW 11v8 2yW 21v9xW1), where xW1 is an antisymmetric
sector andyW 1,2 are symmetric vectors. Therefore, the movi
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fronts themselves are neither symmetric nor antisymme

But the forward (uW for) and backward moving fronts (uW back)

are related byŜ(uW for)5uW back.
Equation~6! explicitly shows that the moving polarizatio

fronts relax exponentially to the final state, in contrast to
algebraic relaxation of the velocity of fronts propagating b
tween stable and unstable states@19#. For example, the de
stabilization of a resting front forE2.0 can be described by
a direct integration of Eq. ~6!, to obtain v85

6A2rE2 /(s1De2rE2T), whereD is an integration constant
In order to compare the analytical and numerical findin
we display the dynamics of the integral of a single fie
componentQ(t)5*x1

x2u1(x,t)dx. For a sufficiently large in-

terval (x1 ,x2), an analytical approximationQ(t)5@u1(x
→`)2u1(x→2`)#* t1

t v8(t8)dt8 can be obtained and com

pared with the results of the numerical solution of Eq.~1!
@see Fig. 2~b!#.

It is worthwhile to have a closer look at the thresho

condition^aW 0ueW0&50. It is obvious that for Galilean symme
try, or in Hamiltonian systems with translational invarianc

^aW 0ueW0& is always zero, and thus the velocity of localize
solutions is an arbitrary parameter@20#. This signals a non-
critical, i.e., parameter independent, double degenerac

the zero eigenvalues corresponding toeW0; see Ref.@21#, and
references therein. Conversely, if the above properties do
hold, then any initially introduced velocity converges to
definite value. But the above analysis discloses that even
dissipative system without Galilean invariance, the veloc
can be considered as a parameter of the solution, prov

that the scalar product̂aW 0ueW0& vanishes for some critica

values of the system parameters and^aW 0ueW0& remains suffi-
ciently small. Now, however, the velocity is not an arbitra
parameter, but rather an order parameter obeying the no
form @Eq. ~6!#. Exactly at the critical point the dissipativ
system behaves in a Hamiltonian-like manner. In contras
gradient systems criterion~5! is never fulfilled, because the
corresponding Jacobian is self-adjoint. Consequently the
genvector which causes the instability is orthogonal to
translational mode; therefore, the front remains at rest. Bu
a small nongradient term is added to a gradient equation

scalar productu^aW 0ueW0&u drops to zero at the bifurcation
point, accompanied by a rapid transition of the respect
eigenvector to the translational mode. In view of this sc
nario, Ising-Bloch transitions appear very peculiar in gra
ent systems.

It is important to stress that there is no need to study
full spectral problem for]uW

1
wW uuW 0 ,p to find aW 0. It suffices to

solve the linear boundary value problem]uWwW
1uuW 0 ,p(aW 0)50.

Then, applying one of the standard algorithms to minim
u^aW 0ueW0&u, one can easily identify whether there is a NI
transition for a given solution in a nonlinear system@see Fig.
1~d!#. The suggested theoretical approach can be straigh
wardly extended to other dissipative models which exhib
transition from resting to moving pulses@22#.
2-3



av
ch
he
e-
on
tiv

e

e

of

D. MICHAELIS et al. PHYSICAL REVIEW E 63 066602
In conclusion, based on symmetry arguments, we h
introduced generalized definitions of both Ising and Blo
fronts. A universial criterion and a generic equation for t
onset of a nonequilibrium Ising-Bloch transition, which r
lies on the coincidence of an eigenmode and the translati
mode at the bifurcation point, have been derived. Dissipa
tt.

ev
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~gradient and nongradient! and Hamiltonian systems hav
been compared in that context.
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